精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10

全國服務(wù)咨詢熱線:

13395745986

當前位置:首頁  >  技術(shù)文章  >  應(yīng)用案例 | T型光聲池的光聲光譜技術(shù)用于同時檢測基于三重共振模態(tài)的多組分氣體

應(yīng)用案例 | T型光聲池的光聲光譜技術(shù)用于同時檢測基于三重共振模態(tài)的多組分氣體

更新日期:2023-07-19      點擊次數(shù):1343
  T型光聲池的光聲光譜技術(shù)用于同時檢測基于三重共振模態(tài)的多組分氣體
 
  T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality
 
  近日,來自西安電子科技大學(xué)、哈爾濱工業(yè)大學(xué)可調(diào)諧(氣體)激光技術(shù)國家級重點實驗室的聯(lián)合研究團隊發(fā)表了《T型光聲池的光聲光譜技術(shù)用于基于三重共振模態(tài)的多組分氣體的同時檢測》論文。
 
  Recently, the joint research team from  School of Optoelectronic Engineering, Xidian University,  National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality.
 
  油浸式電力變壓器是現(xiàn)代電力分配和傳輸系統(tǒng)中最重要的絕緣設(shè)備之一。通過同時測量絕緣油中的溶解氣體,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在電力變壓器的過熱、電弧和局部放電故障的早期診斷中提供合適的解決方案。變壓器故障主要可分為過熱故障和放電故障。CO、CH4和C2H2的含量變化是變壓器故障的主要指標。過熱故障包括裸金屬過熱、固體絕緣過熱和低溫過熱。裸金屬過熱的特征是烴類氣體(如CH4和C2H2)濃度的上升。上述兩種氣體的總和占總烴類氣體的80%以上,其中CH4占較大比例(>30 ppm)。CO的濃度(>300 ppm)強烈指示固體絕緣過熱和變壓器故障中的低溫過熱。當變壓器處于放電故障時,C2H2會急劇增加(>5 ppm,占總烴類氣體的20%-70%)。因此,本研究選擇CO、CH4和C2H2作為目標分析物。傳統(tǒng)的多組分氣體定量檢測方法,如氣相色譜儀、半導(dǎo)體氣體傳感器和電化學(xué)傳感器,在實時監(jiān)測、恢復(fù)時間、選擇性和交叉敏感性方面存在一定限制。基于光聲光譜技術(shù)的光學(xué)傳感器平臺具有高靈敏度、高選擇性、快速響應(yīng)、長壽命和成熟的傳感器設(shè)備等優(yōu)點,在多組分氣體傳感領(lǐng)域發(fā)揮著重要作用。已經(jīng)開發(fā)出多種基于光聲光譜技術(shù)的多組分氣體傳感器模式,如傅里葉變換紅外光聲光譜模式、基于寬帶檢測的熱輻射體或黑體輻射體使用多個帶通濾波器、多激光器與時分復(fù)用(TDM)方法的結(jié)合,以及采用多共振器和頻率分割復(fù)用(FDM)方案。然而,由于寬帶光源的相對弱強度,弱光聲(PA)信號易受到背景噪聲的干擾,這是高靈敏度檢測的主要障礙。
 
  Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (>30 ppm). The concentration of CO (>300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (>5 ppm, 20%− 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection.
 
  由于吸收和共振圓柱體共同決定了其共振頻率,設(shè)計并驗證了一種T型光聲池作為適當?shù)膫鞲衅鳌Mㄟ^引入激勵光束位置優(yōu)化,從模擬和實驗中研究了三種指定的共振模式,呈現(xiàn)了可比較的振幅響應(yīng)。使用QCL、ICL和DFB激光器作為激發(fā)光源,同時測量CO、CH4和C2H2,展示了多氣體檢測的能力。
 
  A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.
 
  圖片顯示了配備了T型光聲池的基于PAS的多組分氣體傳感器配置的示意圖。使用三個激發(fā)激光器作為激光源,包括DFB ICL(HealthyPhoton,型號HPQCL-Q)、DFB QCL(HealthyPhoton,型號QC-Qube)和NIR激光二極管(NEL),分別在2968 cm−1、2176.3 cm−1和6578.6 cm−1處發(fā)射,以實現(xiàn)對CH4、CO和C2H2的同時檢測。ICL、QCL和NIR激光二極管在目標吸收波長處的光功率分別為8 mW、44 mW和32 mW,通過熱功率計(Ophir Optronics 3 A)進行測量。所有激光源都通過調(diào)節(jié)電流和溫度控制來驅(qū)動。
 
  A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm−1, 2176.3 cm−1 and 6578.6 cm−1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.
 
圖片
  Fig.The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.
 
圖片
HealthyPhoton, model HPQCL-Q
 
圖片
HealthyPhoton, model QCQube
 
  結(jié)論
 
  建立了基于T型光聲池的多共振光聲光譜氣體傳感器,并驗證其能夠進行多組分同時檢測,達到ppb級別的靈敏度。通過有限元分析(FEA)模擬優(yōu)化和實驗光束激發(fā)位置設(shè)計,三個指定的諧振頻率的光聲響應(yīng)相互比較,確保了同時檢測多種微量氣體的高性能。選擇了CO、CH4和C2H2這三種可燃氣體作為目標氣體,使用QCL(4.59 µm,44 mW)、ICL(3.37 µm,8 mW)和NIR激光二極管(1.52 µm,32 mW)作為入射光束進行同時檢測驗證。F1模式下,光束照射到緩沖腔體壁上,信噪比(SNR)相比通過吸收圓柱體的情況提高了4.5倍。實驗得到了CO、CH4和C2H2的最小檢測限(1σ)分別為89ppb、80ppb和664ppb,對應(yīng)的歸一化噪聲等效吸收系數(shù)(NNEA)分別為5.75 × 10−7 cm−1 W Hz−1/2、1.97 × 10−8 cm−1 W Hz−1/2和4.23 × 10−8 cm−1 W Hz−1/2。對濕度交叉敏感性進行改進的研究提供了對光聲光譜傳感器在濕度松弛相關(guān)效應(yīng)方面的更好理解。利用單個光聲腔體和單個探測器進行多組分氣體傳感的這種開發(fā)的光聲光譜模式,具有在電力變壓器故障的早期診斷方面的獨特潛力。
 
  Conclusions
 
  A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µm, 44 mW), an ICL (3.37 µm, 8 mW) and a NIR laser diode (1.52 µm, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10−7 cm−1 W Hz−1/2, 1.97 × 10−8 cm−1 W Hz−1/2 and 4.23 × 10−8 cm−1 W Hz−1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.
 
圖片
  Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.
 
圖片
  Schematic structure of the developed T-type PAC.
 
圖片
  Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).
 
圖片
  Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam; (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.
 
圖片
  The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.
 
圖片
  The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement; (b) The PA amplitude vs. frequency of F1 for the two incident ways; (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways; (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.
 
圖片
  Schematic of the improved humidification system for humidity control.
 
  Reference
 
  Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.
 
  https://doi.org/10.1016/j.pacs.2023.100492
 

全國統(tǒng)一服務(wù)電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10
天天影视网天天综合色在线播放 | 欧美三日本三级三级在线播放| 日韩午夜激情av| 亚洲精品在线网站| 日本成人在线不卡视频| 欧美无人高清视频在线观看| 欧美一级高清片在线观看| 亚洲一卡二卡三卡四卡| 91久久精品一区二区三区| 51精品国自产在线| 日本怡春院一区二区| 欧美日韩中文字幕精品| 久久久五月婷婷| 黄色日韩网站视频| 精品国产精品一区二区夜夜嗨| 国产精品国产自产拍高清av王其 | 国产精品对白交换视频| aaa欧美色吧激情视频| 欧美日韩一区中文字幕| 亚洲国产成人av网| 精品视频免费看| 欧美激情在线看| 成人手机电影网| 制服丝袜在线91| 精品亚洲免费视频| 精品三级av在线| 亚洲午夜三级在线| 欧美美女直播网站| 亚洲欧洲成人自拍| 色视频欧美一区二区三区| 久久美女艺术照精彩视频福利播放| 久久福利视频一区二区| 欧美精品一区二区精品网| 一区二区激情视频| 91精品国产麻豆国产自产在线| 国产精品视频在线看| 色婷婷综合五月| 亚洲国产精品t66y| 91久久精品网| 国产精品不卡一区二区三区| 欧美网站大全在线观看| 亚洲三级视频在线观看| 欧美高清一级片在线| 一区二区三区四区不卡视频| 亚洲国产成人一区二区三区| 色综合久久99| 亚洲欧洲日韩一区二区三区| 欧美视频一区二区在线观看| 亚洲四区在线观看| 欧美一区二区三区在| 亚洲激情网站免费观看| 日韩欧美黄色影院| 免费的国产精品| 欧美精品少妇一区二区三区 | 国产日韩综合av| 日韩欧美中文字幕在线观看| 亚洲视频一区在线| 91精品国产欧美日韩| 奇米亚洲午夜久久精品| 欧美日韩成人在线| 91在线播放网址| 最近中文字幕一区二区三区| 欧美一区二区三区小说| 国内精品久久久久影院薰衣草 | 欧美唯美清纯偷拍| 亚洲图片欧美色图| 色综合久久中文字幕综合网| 国产精品一色哟哟哟| 久久精品男人的天堂| 欧美片网站yy| 免费在线观看视频一区| 日韩欧美国产wwwww| 日韩欧美在线第一页| 亚洲精品伦理在线| 欧美三级蜜桃2在线观看| 成人午夜伦理影院| 亚洲天堂精品在线观看| 精品国偷自产国产一区| 成人黄色国产精品网站大全在线免费观看 | 丝袜国产日韩另类美女| 7777精品伊人久久久大香线蕉| 第一福利永久视频精品| 一卡二卡欧美日韩| 91精品国产一区二区三区蜜臀| 欧美视频在线免费| 日本欧美加勒比视频| 久久久影院官网| 精品久久久久香蕉网| 成人丝袜18视频在线观看| 亚洲日穴在线视频| 在线不卡一区二区| 欧美年轻男男videosbes| 国产美女娇喘av呻吟久久| 国产精品久久久久久久久搜平片| 精品女同一区二区| 91蜜桃视频在线| 免费成人在线影院| 国产精品久久久久国产精品日日| 在线观看欧美黄色| 色老头久久综合| 国产高清不卡一区| 一区二区久久久久久| 日韩欧美中文字幕公布| 日韩欧美国产午夜精品| 欧美日韩免费网站| 精品亚洲欧美一区| 一级精品视频在线观看宜春院| 欧美一区二区三区免费大片| 51精品久久久久久久蜜臀| 成人国产亚洲欧美成人综合网 | 日韩一级片网站| 精品成人私密视频| 在线观看国产91| 成人精品电影在线观看| 日韩专区一卡二卡| 亚洲特级片在线| 久久久影视传媒| 欧美一级片免费看| 一本大道久久a久久精品综合| 欧亚洲嫩模精品一区三区| 国产精品一区免费视频| 日本在线不卡视频一二三区| 国产精品久久久久久久午夜片| 日韩片之四级片| 欧美综合在线视频| 欧美一区二区播放| 欧美午夜一区二区| 欧美色欧美亚洲高清在线视频| 国产真实精品久久二三区| 午夜激情综合网| 一区二区视频在线| 自拍av一区二区三区| 国产视频一区在线播放| 日韩欧美在线不卡| 欧美日韩成人一区二区| 日本黄色一区二区| 欧美mv日韩mv国产| 91精品国产福利| 欧美情侣在线播放| 欧美吻胸吃奶大尺度电影| 色综合久久久久综合99| 91伊人久久大香线蕉| 99久久婷婷国产综合精品| 国产大片一区二区| 国产精品小仙女| 国产福利一区在线观看| 国产精品自拍毛片| 国产成人亚洲综合色影视 | 国产精品久久久久影院老司| 精品久久一区二区| 欧美精品一区二区三区视频| 精品免费日韩av| 久久久五月婷婷| 国产三级欧美三级| 中文字幕一区二区在线播放 | 欧美日韩国产小视频在线观看| 91黄色小视频| 欧美日韩激情在线| 日韩视频一区二区在线观看| 日韩精品一区二区三区在线观看| 日韩欧美一二三区| 久久久久久夜精品精品免费| 久久嫩草精品久久久精品| 国产日韩欧美不卡| 国产精品福利一区| 亚洲一二三区视频在线观看| 午夜av电影一区| 国产一区欧美一区| 成人免费毛片a| 欧美午夜精品伦理| 欧美日韩国产在线观看| 日韩欧美一级精品久久| 在线观看一区日韩| 91精品国产综合久久久久久久久久| 日韩欧美国产综合一区 | 欧美图片一区二区三区| 7777精品伊人久久久大香线蕉超级流畅| 欧美日韩大陆一区二区| 欧美精品一区男女天堂| 18成人在线观看| 日韩1区2区3区| 国产91精品免费| 色综合久久中文字幕| 337p亚洲精品色噜噜噜| 欧美日韩一卡二卡| 欧美不卡在线视频| 亚洲婷婷综合色高清在线| 午夜欧美大尺度福利影院在线看| 黄页视频在线91| 色综合天天综合色综合av| 91精品视频网| 欧美人妖巨大在线| 日本一区二区在线不卡| 偷偷要91色婷婷| 福利一区二区在线| 欧美精品一二三区| 91精品国产高清一区二区三区蜜臀| 国产精品丝袜久久久久久app| 午夜精品久久久久久不卡8050| 国产成人精品亚洲777人妖 |