精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

更新日期:2023-08-30      點擊次數:2062

近日,來自安徽大學的周勝副教授團隊發表了《基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術》論文。

Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.

 

甲烷(CH4)是天然氣的主要成分,在工業生產和日常生活中廣泛用作燃料。此外,甲烷是一種重要的溫室氣體,其濃度對全球氣候產生重要影響。因此,甲烷的測量對環境監測、生物醫藥和能源研究具有重要意義。氣體濃度通常通過各種微量氣體傳感器進行測量,例如氣相色譜儀、半導體氣體傳感器和電化學設備。半導體氣體傳感器在適當的操作環境下具有ppm級別的靈敏度。激光吸收光譜技術具有高選擇性、高靈敏度、快速和多成分監測等優勢,目前廣泛用于各種氣體的檢測。激光吸收光譜技術可以準確測量氣體分子的特征吸收線,并基于可調諧激光有效降低其他氣體光譜線的干擾。此外,它提供了實時原位氣體檢測的可能性,這對于從工業過程到環境變化的各種現象的理解和監測至關重要。氣體分子可以通過其指紋吸收光譜進行有效識別,包括典型的所謂“自展寬"參數和“空氣展寬"參數。光譜線參數是壓力和溫度的函數。濃度測量的準確性取決于壓力穩定性和光譜擬合精度。對于定量光譜分析,傳統上通過準確的模型對光譜進行擬合,同時壓力和溫度必須定期校準,尤其是在相對大的環境波動情況下。因此,為實現所需的準確性,系統的復雜性增加了。

Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement of CH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening" parameters and “air-broadening" parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy.

 

目前,人工智能的快速發展為解決這個問題提供了一種新途徑。人工神經網絡已被用于氣體識別,并在足夠訓練數據的條件下表現出良好性能。基于Hopfield自聯想記憶算法的神經網絡已用于識別五種類似的醇的紅外光譜。反向傳播神經網絡用于從混合氣體中識別目標氣體,證明了卷積神經網絡(CNN)模型可以有效提高識別準確性。此外,最近的研究表明深度神經網絡也可以應用于振動光譜分析。卷積神經網絡和自編碼器網絡被用于處理一維振動光譜數據。與傳統氣體檢測技術相比,輔以深度學習的氣體傳感器可以實現準確的靈敏度測量,并降低異常檢測的魯棒性。深度神經網絡(DNN)可以在經過足夠樣本訓練后直接從吸收光譜中學習特征,實現不需要壓力校準和輪廓擬合的氣體濃度直接識別。這種網絡為檢索氣體濃度提供了一種新途徑,無需昂貴且復雜的壓力控制器。為了展示提出的DNN輔助算法的性能,構建了一個基于DFB激光二極管的甲烷檢測氣體傳感器系統。預測的濃度與校準值相當吻合。這項研究表明,基于DNN的激光吸收光譜在大氣環境監測、呼氣檢測等方面具有顯著潛力。

Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection.

A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achieves the direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption  spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..

 

 

實驗裝置

用于獲取甲烷(CH4)氣體吸收光譜的實驗裝置如圖1所示。一臺近紅外DFB激光二極管,最大峰值輸出功率為20毫瓦,被用作光源。通過控制激光溫度和電流,激光可以在6045 cm-1到6047 cm-1范圍內進行調諧寧波海爾欣光電科技有限公司為此項目提供激光驅動器,型號為QC-1000所選CH4在6046.95 cm-1附近的吸收線在圖2中基于從HITRAN數據庫獲取的光譜線參數進行了模擬。DFB激光二極管經過纖維準直器進行準直,然后由一塊CaF2分束器進行對準,分束后的可見紅光(632.8納米)光束用作跟蹤激光。隨后,光束被送入一個7米有效光程的多程傳輸池,并且池內的壓力由壓力控制器、流量控制器和隔膜泵協同控制。一個典型頻率為100赫茲的三角波被用作掃描信號,以驅動激光二極管。最后,激光通過一個InGaAs光電探測器進行檢測,并被數據采集單元卡獲取。信號隨后傳輸到計算機,并由自制的LabVIEW程序進行分析。

Experimental setup

The experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm?1 to 6047 cm?1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm?1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimated by a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program.

 

QC-1000(1) 

 QC-1000, Healthy photon Co., Ltd.

 

 

Fig. 2. Experimental device diagram. 

Fig. 1. Experimental device diagram.

 

Fig. 3. 

Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm?1 and the cross-section of the selected line obtained from the HITRAN database.

 

 

 

結論

總體而言,本項目開發了基于DNN算法和激光吸收光譜的概念驗證氣體傳感器,并設計了基于DFB激光二極管的甲烷檢測傳感器系統。此外,通過計算RMSE和訓練時間評估了DNN算法的性能,并優化了DNN層、神經元數量和epochs等參數,以獲取最佳參數。提出了改進的系統來分析和預測氣體吸收光譜數據,在甲烷濃度預測方面表現出良好的準確性和穩定性。不同濃度的甲烷預測值與相應的理論值線性擬合,證明其在實際領域應用中具有巨大潛力,尤其適用于惡劣環境。

 

Conclusions

Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.

 

 

References

Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 11207


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10
不卡的av中国片| 91亚洲国产成人精品一区二区三| 欧美一区二区三区四区视频| 一本色道久久综合亚洲91| 国产精品美女视频| 欧美视频日韩视频| 亚洲精品高清视频在线观看| 欧美夫妻性生活| 亚洲成人精品影院| 91国产丝袜在线播放| 国产麻豆精品theporn| 日韩一级欧美一级| 欧美性videos高清精品| 综合激情成人伊人| 精品国产精品网麻豆系列| 狠狠色伊人亚洲综合成人| 欧美一区二区视频在线观看| 99免费精品在线观看| ...中文天堂在线一区| 日韩欧美国产小视频| 精品亚洲国产成人av制服丝袜| 欧美一区二区三区免费大片| 欧美日韩在线另类| 亚洲与欧洲av电影| 欧美区在线观看| 99久久精品免费| 亚洲免费伊人电影| 日本国产一区二区| 99久久精品国产一区| 亚洲色图另类专区| 欧美日韩一区三区| 精品国产乱码久久久久久天美| 亚洲精品亚洲人成人网| 欧美亚洲综合色| 欧美视频免费在线观看| 亚洲最新在线观看| 欧美一二三四在线| 欧美日韩精品欧美日韩精品一| 青青草国产精品亚洲专区无| 久久综合网色—综合色88| 欧美一级片在线| 懂色av一区二区三区蜜臀| ...xxx性欧美| 欧美偷拍一区二区| 在线观看日韩高清av| 免费观看在线色综合| 国产亚洲欧美日韩在线一区| 日韩欧美高清dvd碟片| 成人爱爱电影网址| 亚洲第一福利一区| 久久久久久久久久看片| 精品久久久三级丝袜| 欧美日韩国产综合新一区 | 奇米色一区二区| 精品国产91九色蝌蚪| 精品国产免费人成在线观看| 99久久国产综合精品女不卡| 丝袜美腿一区二区三区| 国产亚洲女人久久久久毛片| 色嗨嗨av一区二区三区| 黄色成人在线播放| 久久国产福利国产秒拍| 综合中文字幕亚洲| 欧美日韩国产精品成人| 在线不卡免费av| 91农村精品一区二区在线| 免费在线一区观看| 一区二区中文视频| 日韩精品一区二区三区视频播放 | 欧美在线不卡一区| 国产高清不卡二三区| 亚洲成人免费在线| 国产精品三级av| 欧美一级午夜免费电影| 精品国产乱码久久久久久浪潮| 日韩欧美国产激情| 丰满少妇在线播放bd日韩电影| 视频一区在线播放| 亚洲激情一二三区| 国产日韩欧美精品电影三级在线| 欧美美女喷水视频| 精品99一区二区三区| 欧美电影一区二区| 色悠久久久久综合欧美99| 成人国产亚洲欧美成人综合网| 蜜桃精品在线观看| 亚洲国产成人精品视频| 最新国产の精品合集bt伙计| 久久久亚洲精品一区二区三区| 欧美日韩亚州综合| 一本色道**综合亚洲精品蜜桃冫| 欧美吻胸吃奶大尺度电影 | 成人久久18免费网站麻豆| 秋霞午夜鲁丝一区二区老狼| 亚洲综合丝袜美腿| 一区二区中文视频| 国产精品色呦呦| 国产三级精品在线| 久久亚洲综合色| 欧美大片免费久久精品三p| 欧美日韩精品免费观看视频| 色偷偷一区二区三区| 欧美成人猛片aaaaaaa| 91精品国产综合久久香蕉麻豆| 欧美性色欧美a在线播放| 色妹子一区二区| 欧美视频在线免费看| 欧美日韩一区二区精品| 91污片在线观看| 99精品热视频| 99精品偷自拍| 精品久久久久久久久久国产 | 97se亚洲国产综合自在线不卡| 风流少妇一区二区| 成人激情动漫在线观看| 成人午夜精品在线| 99re热这里只有精品免费视频| k8久久久一区二区三区| 波多野结衣中文字幕一区二区三区| 丁香婷婷综合激情五月色| 成人午夜免费视频| 91玉足脚交白嫩脚丫在线播放| av中文字幕在线不卡| 99久久精品国产网站| 99国产欧美另类久久久精品| 黄色一区二区三区| 欧美三级午夜理伦三级中视频| 欧洲一区在线观看| 欧美日韩一卡二卡三卡 | 在线日韩一区二区| 欧美久久一二三四区| 日韩一区二区三区四区五区六区| 精品久久人人做人人爰| 久久久一区二区| 亚洲人成网站精品片在线观看| 亚洲女同一区二区| 日韩中文字幕不卡| 狠狠色伊人亚洲综合成人| 波多野结衣视频一区| 日本高清不卡aⅴ免费网站| 欧美日韩一级片在线观看| 欧美成人女星排名| 欧美美女喷水视频| 国产人伦精品一区二区| 一区二区三区影院| 另类综合日韩欧美亚洲| 不卡的av网站| 欧美日韩国产大片| 在线观看网站黄不卡| 日韩精品中文字幕一区二区三区 | 久久久www成人免费毛片麻豆| 国产精品国产三级国产aⅴ入口| 亚洲一区二区三区视频在线播放| 奇米777欧美一区二区| heyzo一本久久综合| 日本韩国一区二区| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 色哟哟精品一区| 日韩三级视频中文字幕| 国产精品国产三级国产普通话三级 | 日韩一区二区精品葵司在线 | 3d动漫精品啪啪一区二区竹菊 | 亚洲靠逼com| 精品一区二区三区免费视频| 91视视频在线观看入口直接观看www| 欧美在线观看一二区| 欧美自拍丝袜亚洲| 欧美国产1区2区| 日韩电影免费在线观看网站| 亚洲国产精品精华液网站| 日韩黄色一级片| 成人性色生活片| 欧美三级午夜理伦三级中视频| 精品美女在线观看| 日韩三级中文字幕| 一区二区三区在线看| 国产一区二区久久| 在线观看不卡视频| 欧美日韩一卡二卡| 国产精品高清亚洲| 国产一区二区精品久久91| 欧美亚洲愉拍一区二区| 欧美日韩精品欧美日韩精品一综合| 国产精品婷婷午夜在线观看| 久久精品噜噜噜成人88aⅴ| 色综合久久综合网欧美综合网| 欧美亚洲一区三区| 亚洲欧美电影一区二区| 风流少妇一区二区| 精品国产一区二区在线观看| 久久精品亚洲精品国产欧美kt∨ | 久久91精品国产91久久小草| 欧美性色视频在线| 欧美顶级少妇做爰| 亚洲一二三专区| 黄色成人在线免费| 欧美色区777第一页| 亚洲黄色免费网站| 欧美日韩中文在线| 91精品麻豆日日躁夜夜躁|