精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 使用開路傳感器系統研究溫度和濕度對N2O吸收譜和濃度的影響

應用案例 | 使用開路傳感器系統研究溫度和濕度對N2O吸收譜和濃度的影響

更新日期:2023-12-11      點擊次數:1598

近日,來自山東師范大學物理與電子科學學院的聯合研究團隊發表了一篇題為Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System的研究論文。


Introduction

Since Chinas proposal of the carbon peak" and carbon neutrality" goals, the government and society have attached great importance to the problems of air pollution and global warming. Nitrous oxide (N2O) is among the six greenhouse gases under the Kyoto Protocol. N2O content is relatively low compared to carbon dioxide (CO2), but its global warming potential is about 310 times that of CO2. In addition, it is destructive to ozone (O3). There are many reasons for the changes in N2O concentrations in the atmosphere, which are partly due to anthropogenic activities, such as the widespread use of fertilizers in agricultural activities. The concentrations of other gases in the atmosphere, as well as the wind speed and direction, are all correlated with changes in N2O concentrations. At the macro level, temperature and humidity are also factors affecting the absorption coefficient of N2O gas. However, relatively few studies have been conducted on the specific effects of temperature and humidity on N2O gas, and analysis has also been lacking on the influence of temperature and humidity on the absorption spectrum and the concentration of N2O. Moreover, some uncertainty and variability remain in the observations of the relationship between N2O gas concentrations and temperature and humidity. The reasons for these discrepancies may be regional differences, differences in observation methods, and imperfections in data, which are all important bases for measuring the N2O concentration in atmospheric, medical, combustion, and agricultural processes. Thus, further research and exploration, combined with additional field observations and modeling experiments, can uncover the mechanism of temperature and humidity on the N2O concentration. Consequently, providing a scientific basis for this concentration is essential for reducing N2O emissions, controlling climate change, and promoting sustainable development and environmental protection.


簡介

自中國提出“碳峰值"和“碳中和"目標以來,政府和社會對空氣污染和全球變暖問題給予了極大關注。N2O是《京都議定書》下的六種溫室氣體之一。與二氧化碳(CO2)相比,N2O含量相對較低,但其全球變暖潛力約為CO2310倍。此外,它對臭氧(O3)具有破壞性。大氣中N2O濃度的變化有許多原因,部分原因是人類活動造成的,例如在農業活動中廣泛使用化肥。大氣中其他氣體的濃度以及風速和風向都與N2O濃度的變化相關。在宏觀水平上,溫度和濕度也是影響N2O氣體吸收系數的因素。然而,對溫度和濕度對N2O氣體具體影響的研究相對較少,對溫度和濕度對N2O吸收譜和濃度的影響分析也不足。此外,在N2O氣體濃度與溫度和濕度之間的關系觀察中仍存在一些不確定性和變異性。導致這些差異的原因可能是地區差異、觀測方法差異以及數據的不完善,這些都是測量大氣、醫療、燃燒和農業過程中N2O濃度的重要基礎。因此,進一步的研究和探索,結合更多的現場觀測和建模實驗,可以揭示溫度和濕度對N2O濃度的機制。因此,為減少N2O排放、控制氣候變化,促進可持續發展和環境保護提供科學依據至關重要。


Experimental Details

Sensor Setup

Based on WMS technology and an open optical path, an open optical-path detection system for detecting N2O gas in the atmosphere was built. The schematic diagram is shown in Figure 1. The sensor system is composed of a light-source module, photoelectric Remote Sens. 2023, 15, 5390 4 of 11 detection module, and data processing module. The light-source module mainly consists of signal generation, a laser drive, QCL, and an indication light source. To effectively realize the tunable characteristics of laser emission wavelength, we designed the signal generator plate to generate a high-frequency sine wave signal with a frequency of 10 kHz to realize the modulation function and to generate a low-frequency sawtooth wave signal with a frequency of 10 Hz to realize the scanning function. The two signals are superimposed on the laser driver, controls the temperature and central emission wavelength of QCL and converts it into an injection current acting on the detection light source QCL so that the emission wavelength of QCL is in the tunable range of 2203.7–2204.1 cm?1.


實驗細節

傳感器設置

基于波長調制光譜學(WMS)技術和開路光學路徑,建立了一種用于檢測大氣中N2O氣體的開路光學路徑檢測系統。示意圖如圖1所示。該傳感器系統由光源模塊、光電檢測模塊和數據處理模塊組成。光源模塊主要包括信號生成、激光驅動、量子級聯激光器(QCL)和指示光源。為了有效實現激光發射波長的可調特性,我們設計了信號生成器板,生成頻率為10 kHz的高頻正弦波信號以實現調制功能,并生成頻率為10 Hz的低頻鋸齒波信號以實現掃描功能。這兩個信號疊加在激光驅動器上,控制QCL的溫度和中心發射波長,并將其轉化為作用于檢測光源QCL的注入電流,使QCL的發射波長處于2203.7–2204.1 cm-1的可調范圍內。

Fig 1(1).png

Figure 1. Schematic diagram of N2O open optical sensor system.

項目使用的激光驅動器是寧波海爾欣光電科技有限公司的QC750-TouchTM量子級聯激光屏顯驅動器。

l集成電流及溫控驅動,功能完備;

l溫度控制驅動采用非PWM式的連續電流輸出控制,大大延長TEC器件的使用壽命;

l多種輸出安全保護機制,保護QCL使用安全:可調電流鉗制、輸出緩啟動、過壓欠壓保護、超溫保護、繼電器短路輸出保護;

l大電流軟鉗制功能,避免誤操作大電流損壞激光管;

lUI界面顯示便于用戶操作使用及數據觀測;

l全自主研發,集成度高,性價比高。

QC750-Touch™(1).jpg

QC750-TouchTM, Ningbo HealthyPhoton Technology, Co., Ltd.


Selection of N2O Transitions

To achieve effective detection of N2O gas molecules, we need to select the absorption line intensity and the emission central wavelength of the laser. First, combined with the HITRAN-2016 database, the wave number range of 2000–2250 cm?1 was selected to analyze the region of the absorption spectral line intensity of N2O, and then carbon monoxide (CO), carbon dioxide (CO2), and water (H2O) molecules were simulated and analyzed, as shown in Figure 2. Within this wave number range, the absorption spectra of CO2 were mainly distributed within the 2000–2081 cm?1 range, and the absorption spectra of CO gas were distributed within the 2025–2200 cm?1 wave number range. The absorption spectra of N2O gas were distributed before the 2020 cm?1 wave number range. The absorption spectra of N2O gas molecules were mainly distributed in the 2200–2250 cm?1 wave number range, and they were far from the absorption spectra of water vapor and other gases, reducing interference. At around 2203.7 cm?1 , the absorption spectra of N2O gas were the strongest. Therefore, we set the position of the N2O absorption line to 2203.7333 cm?1, which was used as the wave number of the QCL emission center. The corresponding spectral line intensity was 7.903 × 10?19 (cm?1 .mol?1 ). The central current and temperature of QCL were set at 330 mA and 36.0 ?C, respectively.


N2O躍遷的選擇

為了有效檢測N2O氣體分子,我們需要選擇吸收線強度和激光的發射中心波長。首先,結合HITRAN-2016數據庫,選擇了2000–2250 cm?1的波數范圍,以分析N2O吸收光譜線強度的區域,然后對一氧化碳(CO)、二氧化碳(CO2)和水(H2O)分子進行了模擬和分析,如圖2所示。在這個波數范圍內,CO2的吸收光譜主要分布在2000–2081 cm?1范圍內,CO氣體的吸收光譜分布在2025–2200 cm?1波數范圍內。H2O氣體的吸收光譜分布在2020 cm?1波數范圍之前。N2O氣體分子的吸收光譜主要分布在2200–2250 cm?1波數范圍內,遠離水蒸氣和其他氣體的吸收光譜,減少了干擾。在2203.7 cm?1左右,N2O氣體的吸收光譜達到峰值。因此,我們將N2O吸收線的位置設置為2203.7333 cm?1,用作QCL發射中心的波數。相應的光譜線強度為7.903 × 10?19cm?1·mol?1)。QCL的中心電流和溫度分別設置為330 mA和36.0 ℃。

Figure 2. The intensity distribution of absorption lines of N2O, CO, CO2, and H2O in the range of 2000–2250 cm?1.


Conclusions

In this study, we investigated the effects of temperature and humidity on the concentration of N2O and its absorption spectra using an open-path sensor system. By combining theoretical analysis and field monitoring, we first conducted monitoring of N2O in a campus environment, analyzing the effects of temperature on its concentration and absorption spectra. We discovered that the concentration of N2O would increase correspondingly with the increase in temperature. The influence of humidity on N2O concentration was monitored under the condition that the ambient temperature of the laboratory remained unchanged. The concentration of N2O was negatively correlated with humidity. The 2f and 1f signals under different temperature and humidity levels were extracted for analysis. We found that the higher the temperature, the smaller the peak value of the 2f and the 1f signals, which accords with the trend of the Gaussian function changing with temperature. Under different humidity conditions, the lower the humidity, the larger the 2f signal peak; the higher the humidity, the smaller the 2f signal. This study is of great significance for analyzing the relationship between N2O and environmental parameters such as temperature and humidity. We hope that our research findings can assist environmental agencies in formulating more effective environmental policies for different environments. In the future, we can use QCL to analyze the relationship between N2O and other environmental and gas parameters.


結論

在本研究中,我們利用開路傳感器系統研究了溫度和濕度對N2O濃度及其吸收光譜的影響。通過理論分析和現場監測相結合,我們首先在校園環境中進行了N2O監測,分析了溫度對其濃度和吸收光譜的影響。我們發現隨著溫度升高,N2O濃度相應增加。在實驗室環境中,保持環境溫度不變的條件下監測了濕度對N2O濃度的影響。N2O濃度與濕度呈負相關。在不同溫度和濕度水平下提取并分析了2f和1f信號。我們發現溫度越高,2f和1f信號的峰值越小,這與高斯函數隨溫度變化的趨勢相符。在不同濕度條件下,濕度越低,2f信號峰值越大;濕度越高,2f信號越小。這項研究對分析N2O與溫度、濕度等環境參數之間的關系具有重要意義。我們希望我們的研究結果能夠協助環境機構為不同環境制定更有效的環境政策。未來,我們可以利用QCL來分析N2O與其他環境和氣體參數之間的關系。


參考:

Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System, Remote Sens. 2023, 15, 5390.


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10
日韩女优av电影| 日韩欧美色电影| 欧美色图12p| 亚洲激情在线播放| 91在线视频观看| 欧洲精品在线观看| 一区二区三区四区五区视频在线观看| 盗摄精品av一区二区三区| 精品国产乱码久久久久久老虎| 精品国产乱码久久| 麻豆精品视频在线| 91精品国产一区二区三区蜜臀| 欧美激情一区二区三区不卡 | 欧美色爱综合网| 亚洲午夜电影在线| 欧美日韩亚洲丝袜制服| 久久久青草青青国产亚洲免观| 黑人精品欧美一区二区蜜桃| 精品国产欧美一区二区| 亚洲毛片av在线| 在线观看欧美日本| 国产偷国产偷精品高清尤物| 成人小视频在线| 在线综合视频播放| 国产在线精品一区二区不卡了| 色悠久久久久综合欧美99| 一区二区三区四区国产精品| 色综合中文字幕| 久久青草欧美一区二区三区| 国产麻豆欧美日韩一区| 欧美日韩一区三区| 国产乱码精品一区二区三区忘忧草 | av影院午夜一区| 日韩女优电影在线观看| 国产成人精品一区二| 在线综合视频播放| 国产成人免费视频精品含羞草妖精| 欧美日韩国产一级| 国产成人aaaa| 久久一区二区三区国产精品| 精品国产老师黑色丝袜高跟鞋| 久久影院视频免费| 日本精品一区二区三区四区的功能| 久久精品欧美日韩| 欧美天堂一区二区三区| 一区二区三区在线播| 欧美一级片免费看| 日韩av在线免费观看不卡| 欧美网站一区二区| 高清不卡一二三区| 国产亚洲精品久| 欧美三日本三级三级在线播放| 一区二区三区资源| 日本大香伊一区二区三区| 狠狠色丁香婷婷综合久久片| 日韩欧美在线影院| 日本精品一级二级| 亚洲高清免费观看高清完整版在线观看| 欧美一卡2卡3卡4卡| 免费高清视频精品| 日韩欧美国产1| 色老汉一区二区三区| 亚洲一区在线视频观看| 色香色香欲天天天影视综合网| 精品夜夜嗨av一区二区三区| 日韩欧美一级二级| 在线观看欧美精品| 青椒成人免费视频| 日韩一区二区三区在线观看| 欧美日韩色婷婷| 亚洲国产成人tv| 91精品国产综合久久久久久久久久| av中文字幕一区| 亚洲一卡二卡三卡四卡五卡| 欧美精品少妇一区二区三区 | 图片区小说区国产精品视频| 678五月天丁香亚洲综合网| 精品女厕一区二区三区| 亚洲成人先锋电影| 日韩免费看的电影| 在线播放日韩导航| 国产·精品毛片| 亚洲女性喷水在线观看一区| 精品视频一区二区不卡| 色偷偷一区二区三区| 日本aⅴ精品一区二区三区| 精品欧美黑人一区二区三区| 337p亚洲精品色噜噜狠狠| 国产精品一区二区你懂的| 中文字幕一区二区三区av| 欧美午夜免费电影| 欧美视频第二页| 国产福利一区二区| 亚洲黄色av一区| 日韩一卡二卡三卡四卡| 欧美丰满美乳xxx高潮www| 成人黄色电影在线 | 国产欧美日韩久久| 在线亚洲高清视频| 欧美综合天天夜夜久久| 国产精品18久久久久久久久久久久 | 日本大香伊一区二区三区| 久久99精品国产麻豆不卡| 国产精品国产三级国产有无不卡| 欧美日韩三级视频| 555www色欧美视频| 91一区二区在线| 久久国产精品99精品国产 | 337p日本欧洲亚洲大胆色噜噜| 欧美一区二区免费视频| 黄色精品一区二区| 韩国午夜理伦三级不卡影院| 国产精品伦一区| 精品入口麻豆88视频| 日本韩国一区二区三区视频| 欧美日韩二区三区| 91视频国产观看| 国产黑丝在线一区二区三区| 日韩国产成人精品| 亚洲免费三区一区二区| 久久在线观看免费| 日韩一区二区三区av| 一本大道久久a久久精品综合| 欧美三级韩国三级日本三斤 | 亚洲成人三级小说| 亚洲同性gay激情无套| www国产精品av| 欧美一区午夜精品| 欧美系列一区二区| 色香色香欲天天天影视综合网| 欧美日韩精品一二三区| 91福利社在线观看| 91麻豆精东视频| 99热99精品| 成人动漫av在线| 懂色av一区二区三区免费观看| 九一九一国产精品| 蜜臀av性久久久久蜜臀aⅴ四虎| 亚洲国产精品久久艾草纯爱| 综合激情网...| 国产精品国产三级国产aⅴ原创| 久久久精品综合| 精品av久久707| 欧美精品一区二区三区在线| 日韩一卡二卡三卡四卡| 欧美一卡二卡三卡| 欧美一区二区三区四区高清| 欧美日韩成人综合天天影院| 欧美性高清videossexo| 欧美日韩在线精品一区二区三区激情| 色老头久久综合| 在线亚洲一区观看| 精品视频一区二区不卡| 51精品国自产在线| 日韩午夜在线播放| 久久久午夜电影| 欧美国产精品一区二区三区| 中文幕一区二区三区久久蜜桃| 国产午夜亚洲精品午夜鲁丝片| 日本一区二区成人| 亚洲欧洲一区二区三区| 一区二区三区中文字幕电影| 亚洲一区二三区| 日本美女视频一区二区| 极品少妇xxxx精品少妇| 岛国av在线一区| 欧美日韩国产精品一区二区三区四区 | 成人va在线观看| 91色在线porny| 在线观看日韩av先锋影音电影院| 欧美乱妇一区二区三区不卡视频 | 成人免费视频播放| 欧美午夜精品久久久久久人妖 | 一本久久综合亚洲鲁鲁五月天 | 国产一区二区三区免费播放 | 亚洲成人综合视频| 激情综合五月天| 99这里只有精品| 欧美中文字幕不卡| 精品剧情v国产在线观看在线| 欧美日韩中文另类| 欧美精品一区二区久久久| 国产精品午夜在线观看| 一区二区免费在线播放| 秋霞av亚洲一区二区三| 成人性生交大片免费看中文| 黑人精品xxx一区一二区| 91精品国产色综合久久不卡蜜臀| 精品久久一区二区三区| 在线综合亚洲欧美在线视频| 国产亚洲视频系列| 亚洲一区在线免费观看| 国产一区啦啦啦在线观看| 精品欧美一区二区三区| 日韩你懂的在线观看| 日韩精品综合一本久道在线视频| 中文字幕视频一区| 狠狠狠色丁香婷婷综合久久五月| 欧美日韩在线另类| 色成年激情久久综合|