精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 吸收光譜優化基于深度學習網絡的自適應Savitzky Golay濾波算法

應用案例 | 吸收光譜優化基于深度學習網絡的自適應Savitzky Golay濾波算法

更新日期:2023-12-25      點擊次數:1787

Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.

近日,來自安徽大學、山東師范大學聯合研究團隊發表了一篇題為Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究論文。

 

 

研究背景 Research Background

Nitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.

氮氧化物(NO2)是大氣中的主要污染物,源自自然光照、排放和工業排放。長時間暴露于NO2與呼吸問題的風險增加有關。NO2在大氣中產生的二次污染物可能導致光化學煙霧和酸雨。激光光譜學,如吸收光譜、熒光光譜和拉曼光譜,在物理學、化學、生物學和材料科學中發揮著日益重要的作用。它為追蹤具有靈敏度、選擇性和快速響應的氣體分析提供了強大的平臺。激光吸收光譜已被用于NO2的定量分析。然而,測得的氣體吸收光譜數據通常受到各種噪聲的污染,如隨機和相干噪聲,這可能扭曲有效吸收光譜并影響檢測靈敏度。

 

The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.

最近,Savitzky-GolayS-G)濾波算法因其參數較少、操作速度較快且保留了光譜的高度和形狀而受到關注。此外,可以在一個簡單的步驟中計算導數和平滑的光譜。RivoloNagel開發了一種自適應S-G平滑算法,逐點選擇最佳濾波參數。通過簡單的多變量閾值方法,S-G濾波器可以去除連續葡萄糖監測(CGM)信號中的所有類型噪聲,并進一步用于檢測低血糖/高血糖事件。S-G平滑濾波器廣泛用于平滑傅立葉變換紅外光譜的光譜,可消除隨機地震噪聲、遙感圖像融合和脈動波的處理。

 

The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance.

S–G 平滑濾波器的性能取決于多項式階數和窗口大小的適當折中。然而,在實際應用中,噪聲源和吸收光譜是未知的。在固定的窗口大小和多項式階數下獲得最佳的濾波效果是困難的。為解決這個問題,我們提出了一種優化的自適應S-G算法,將深度學習(DL)網絡與傳統的S-G濾波結合起來,以提高測量系統的性能。

 

實驗設置Experimental setup

Fig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube™, HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.

1展示了實驗設置,包括光源、帶有氣體壓力控制器的多通道吸收池、一系列鏡子、探測器和計算機。

Fig. 1(1).png

 

Fig. 1. Experimental device diagram.

 

 

寧波海爾欣光電科技有限公司為此項目提供了量子級聯激光器(型號:QC-Qube™ 全功能迷你量子級聯激光發射頭)。激光器由溫度控制器控制,最大峰值輸出功率為30 mW,由電流控制器控制,工作在~6.2 mm,通過鈣氟化物(CaF2)鏡子的輻射與追蹤激光(可見紅光,波長632.8 nm)共線,使用氧化鋅硒(ZnSe)分束器。光束進入具有2 m有效光程的多通道池,通過流量控制器和氣體池入口和出口的隔膜泵控制池中的壓力。典型頻率為100 Hz的三角波用作掃描信號。在296 K的溫度下,波數從1630.1調至1630.42 cm-1。使用熱電冷卻的汞鎘鎵探測器進行信號檢測,該探測器使用75 mm焦距的平凸透鏡。DAQ卡探測器放置在探測器旁邊,將數據傳輸到計算機,數據由LabVIEW程序進行實時分析。

QC-Qube™.jpg

 

QC-Qube™, HealthyPhoton Co., Ltd.

 

Fig.2(1).png

 

Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.

Fig.3(1).png

 

Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.

 

結論Conclusion

An improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.

在這項研究中,我們開發了一種改進的Savitzky-GolayS-G)濾波算法,用于去噪氮氧化物(NO2)的吸收光譜。我們引入了深度學習(DL)網絡到傳統的S-G濾波算法中,以實時調整窗口大小和多項式階數。DL網絡的自適應和跟蹤反饋能夠有效解決數字信號處理中選擇輸入濾波器參數的盲目性。我們將優化后的自適應S-G濾波算法與多信號平均濾波(MAF)算法進行比較,以展示其性能。優化后的S-G濾波算法被用于檢測氮氧化物在基于中量子級聯激光器(QCL)的氣體傳感器系統中的應用。實驗結果表明,該算法獲得了5倍的靈敏度增強,表明新開發的算法可以生成高質量的氣體吸收光譜,適用于大氣環境監測和呼吸氣檢測等應用。

 

 

reference參考來源:

Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10
精品久久久久久国产91| 久久国产综合精品| 成人黄动漫网站免费app| 日韩无一区二区| 国产精品高潮呻吟| av资源网一区| 欧美丰满嫩嫩电影| 免费精品视频最新在线| 欧美一卡二卡三卡| 1024亚洲合集| 色婷婷久久久久swag精品| 欧美一区二区三区免费视频| 天堂影院一区二区| 91精品国产色综合久久不卡电影| 国产欧美日韩卡一| 不卡的av电影| 日韩亚洲电影在线| 国产一区二区毛片| 欧美日韩一区二区三区在线 | 欧美日韩免费观看一区三区| 久久理论电影网| 粉嫩av一区二区三区粉嫩| 欧美日韩在线播放一区| 蜜桃av噜噜一区| 色婷婷激情一区二区三区| 亚洲成在线观看| 欧美一二三区在线观看| 亚洲码国产岛国毛片在线| 在线亚洲+欧美+日本专区| 久久精品视频一区二区三区| 99精品国产热久久91蜜凸| 欧美va在线播放| va亚洲va日韩不卡在线观看| 欧美一区二区三区视频免费| 国产精品综合久久| 日韩一区二区三区三四区视频在线观看 | 精品国精品自拍自在线| 亚洲福利一区二区| 日韩美一区二区三区| 日日夜夜精品视频免费| 精品久久久久久综合日本欧美 | 精品美女一区二区| 欧美日韩亚洲91| 国产精品国产三级国产三级人妇 | 成人丝袜高跟foot| 在线一区二区三区四区五区| 日本va欧美va欧美va精品| 精品国产凹凸成av人网站| 日本视频中文字幕一区二区三区| 欧美精品一区二区三区蜜桃| 久久99精品久久久| 337p亚洲精品色噜噜狠狠| 成人手机在线视频| 国产精品欧美一级免费| 欧美日韩一区二区三区高清 | 中文字幕第一页久久| 欧美三区在线视频| 天堂成人国产精品一区| 欧美日韩久久久一区| av影院午夜一区| 国产精品二三区| 欧美v亚洲v综合ⅴ国产v| 久久99精品久久久久久动态图| 欧美精品一卡二卡| 欧美特黄级在线| 一区二区三区日韩精品视频| 在线观看一区不卡| av网站免费线看精品| 亚洲免费视频成人| 欧美性猛交xxxx黑人交| a亚洲天堂av| 亚洲女厕所小便bbb| 欧美性大战久久| 欧美日韩国产激情| 亚洲一区二区av电影| 欧美日韩成人一区二区| 欧美视频精品一区| 日韩不卡一区二区三区| 精品精品国产高清a毛片牛牛| 欧美日韩一区二区三区视频| 久久精品国产亚洲5555| 国产欧美一区二区三区在线看蜜臀 | 亚洲日本乱码在线观看| 欧洲另类一二三四区| 精品日本美女福利在线观看| 亚洲成人自拍偷拍| 精品va天堂亚洲国产| 日韩精品一区二| 99re在线精品| 日本中文一区二区三区| 国产日韩三级在线| 日本国产一区二区| 91久久精品一区二区三| 国内精品伊人久久久久av一坑| 日本一区二区久久| 欧美日韩亚洲另类| 欧美日韩视频一区二区| 国产成都精品91一区二区三| 曰韩精品一区二区| 欧美精品一区二区久久婷婷| 亚洲精品一线二线三线无人区| 91首页免费视频| 捆绑紧缚一区二区三区视频| 国产精品久久久久久久久图文区| 欧美色窝79yyyycom| 欧美人与禽zozo性伦| 成人av在线一区二区| 丝袜亚洲精品中文字幕一区| 国产网站一区二区| 91精品国产综合久久久久久漫画| 欧美日本一区二区| 99久久精品国产一区| 麻豆精品视频在线观看视频| 亚洲蜜桃精久久久久久久| 精品欧美久久久| 精品婷婷伊人一区三区三| 欧美电影一区二区三区| 第一福利永久视频精品| 国产成人自拍高清视频在线免费播放| 亚洲一区视频在线| 国产精品二区一区二区aⅴ污介绍| 7777精品伊人久久久大香线蕉超级流畅 | 波多野结衣的一区二区三区| 久久99国产乱子伦精品免费| 亚洲精品国产精华液| 欧美极品美女视频| 欧美一区二区播放| 欧美日韩亚洲丝袜制服| 色一情一乱一乱一91av| 欧美丰满少妇xxxxx高潮对白| 91色视频在线| 成人做爰69片免费看网站| 精品一区二区免费视频| 日本欧美一区二区三区| 亚洲午夜精品在线| 亚洲日本一区二区| 亚洲欧洲三级电影| 国产精品美女久久福利网站| 久久只精品国产| 欧美mv日韩mv亚洲| 日韩欧美视频在线| 日韩午夜电影在线观看| 欧美精品色综合| 欧美精品1区2区3区| 欧美性大战久久久久久久蜜臀| 色呦呦一区二区三区| 精品国产一区二区三区av性色| 欧美一区二区三区小说| 91麻豆精品国产91久久久资源速度| 在线日韩一区二区| 在线国产亚洲欧美| 欧美性受xxxx| 欧美日韩高清在线播放| 日韩一区二区三区视频在线| 日韩欧美一区二区久久婷婷| 日韩欧美一区在线| 亚洲精品一区二区三区蜜桃下载 | 欧美酷刑日本凌虐凌虐| 欧美日韩不卡在线| 日韩免费福利电影在线观看| 精品日产卡一卡二卡麻豆| 久久综合九色综合欧美98| 国产性色一区二区| 18成人在线观看| 亚洲一区中文日韩| 日韩av网站在线观看| 久久国产生活片100| 国产成人精品影视| a在线欧美一区| 色综合欧美在线| 7878成人国产在线观看| 欧美成人精品3d动漫h| 91精品1区2区| 91精品国产一区二区三区蜜臀| 精品欧美一区二区在线观看| 国产网红主播福利一区二区| 亚洲人吸女人奶水| 日产国产欧美视频一区精品 | 中文字幕在线一区| 亚洲电影一级黄| 精品一区二区影视| 成人av网站免费观看| 欧美视频在线播放| 日韩精品一区二| 91精品在线观看入口| 欧美激情一区二区三区| 亚洲伊人伊色伊影伊综合网| 国产在线视视频有精品| 91麻豆国产精品久久| 欧美日韩精品一区二区三区四区 | 欧美影视一区在线| 久久综合久久综合九色| 亚洲免费av高清| 国产综合色在线| 色婷婷亚洲综合| 色狠狠色狠狠综合| 久久亚洲综合色| 亚洲bt欧美bt精品777| 国产传媒一区在线| 欧美色区777第一页|